Two-parameter families of strange attractors.
نویسنده
چکیده
Periodically driven two-dimensional nonlinear oscillators can generate strange attractors that are periodic. These attractors are mapped in a locally 1-1 way to entire families of strange attractors that are indexed by a pair of relatively prime integers (n(1),n(2)), with n(1)>/=1. The integers are introduced by imposing periodic boundary conditions on the entire strange attractor rather than individual trajectories in the attractor. The torsion and energy integrals for members of this two parameter family of locally identical strange attractors depend smoothly on these integers.
منابع مشابه
Saddle-node Cycles and Prevalence of Strange Attractors
We consider parametrized families of diieomorphisms bifurcating through the creation of critical saddle-node cycles and we show that they exhibit H enon-like strange attractors for a set of parameter values which has positive Lebesgue density at the bifurcation value. This is the rst example of a bifurcation mechanism displaying such prevalence of H enon-like chaotic behaviour. Furthermore, for...
متن کاملStrange non-chaotic attractors in quasiperiodically forced circle maps
The occurrence of strange non-chaotic attractors (SNA) in quasiperiodically forced systems has attracted considerable interest over the last two decades, in particular since it provides a rich class of examples for the possibility of complicated dynamics in the absence of chaos. Their existence was discovered in the early 1980’s, independently by Herman [1] for quasiperiodic SL(2, R)-cocycles a...
متن کاملThe creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations
We propose a general mechanism by which strange non-chaotic attractors (SNA) can be created during the collision of invariant tori in quasiperiodically forced systems, and then describe rigorously how this mechanism is implemented in certain parameter families of quasiperiodically forced interval maps. In these families a stable and an unstable invariant circle undergo a saddle-node bifurcation...
متن کاملPeriodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbits to saddle-focus equilibria
We discuss dynamics near homoclinic orbits to saddle-focus equilibria in threedimensional vector fields. The existence of periodic and strange attractors is investigated not in unfoldings, but in families for which each member has a homoclinic orbit. We consider how often, in the sense of measure, periodic and strange attractors occur in such families. We also discuss the fate of typical orbits...
متن کاملChaotic dynamics of a nonlinear density dependent population model
We study the dynamics of an overcompensatory Leslie population model where the fertility rates decay exponentially with population size. We find a plethora of complicated dynamical behaviour, some of which has not been previously observed in population models and which may give rise to new paradigms in population biology and demography. We study the twoand three-dimensional models and find a la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chaos
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2007